
 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347- 5552, Volume-1, Issue-1, September, 2013

16

Test Cases Optimization Evaluation Using
Efficient Algorithm with UML

 Manoj Kumar, Prof.(Dr.) Mohammad Husain

Abstract- The expenses of software testing is about 40-60% of
the total cost of the software, so that reduction of test case
numbers or test suite size is very much important and cannot
avoid it without compromise the quality of the software. Error
finding test case along with specific coverage criteria are more
suitable for optimization that means the best one fit test case is
selected above all and rest are ignored the number of test cases
does not matter , they can be less or more either at the time of
generation of test cases or after. For the reduction of test cases
two options were proposed. One was at the time of generation
and other was based on optimization concepts. The second
case was preferred that means test case optimization after
generation of the initial test case by random method. To
reduce the test cases, the work was done on genetic algorithm
[GA] based optimization approach.

Index Terms- Activity Diagram, Genetic Algorithm,
 Optimization, Test Cases, UML

I. INTRODUCTION
Test case generation is the most important part of the
testing efforts, the automation of specification based test
case generation needs formal or semi-formal specifications.
As a semi-formal modeling language, UML is widely used
to describe analysis and design specifications by both
academia and industry, thus UML models become the
sources of test generation naturally. Test cases are usually
generated from the requirement or the code while the
design is seldom concerned [1]. UML is the most dominant
standard language used in modeling the requirements [2,
3,4] and considered an important source of information for
test case design. Therefore if it is satisfactorily exploited it
will reduce testing cost and effort and at the same time
improve the software quality.
Several researchers during the last decade have been using
different UML models to generate test cases [5, 6, 7, 8,
9,10, 11]. Activity diagrams are one of the important UML
models used in representing the workflows of stepwise
activities and actions with support for choice, iteration and
concurrency. Moreover, Activity diagrams can be utilized
to describe the business and operational step-by-step
workflows of components in a system [12].

Manuscript received September 09, 2013.
Manoj Kumar, Research Scholar, UPRTOU, Allahabad, India, (e-mail:
iisemanoj@gmail.com).
Dr. Mohammad Husain, Director, Jahangirabad Institute of Technology,
Barabanki, India, (e-mail: mohd.husain90@gmail.com).

It shows the overall flow of control between activities as
well as the activity-based relationships among objects as it
has all the characteristics that can improve the quality of the
automatically generated test cases as well as using these test
cases for system, integration, and regression testing [13].
Different sets of test cases used in those types of testing
should have certain parameters or characteristics; they
normally consist of a unique identifier, preconditions, a
series of steps (also known as actions) to follow, input, and
expected output, and sometimes post conditions [14].
Having this form still doesn’t ensure that all test cases can
be used and provide expected results as the quality of the
generated test cases is the threshold. Quality of test cases
depends on how far they would cover all the functionalities
in a system under test [15, 16]. The test cases should be
validated against some known quality standards [17, 18, 19]
to ensure that they are in an acceptable form as well as
ensure that they cover all the functionalities of a system.

Table 1: Generated Test Scenario

Random test generation systems have been used to produce
test cases; these systems tend to produce a uniform
distribution of test case studies said that the testing was
very much expensive and time taking process therefore
automatic generation of test cases reduced the effort of a

Test Cases Optimization Evaluation Using Efficient Algorithm with UML

17

tester and developer so cast and time. The optimal number
of test cases required for testing was given by GA
approach. That was the easiest flexible and could be applied
to multi-objective optimization problems [20, 21].
Genetic algorithms [22] have been used to generate test sets
automatically by searching the domain of the software for
suitable values to satisfy a predefined testing criterion.
These criteria have been set by the requirements for test
data set adequacy of structural testing, such as obtaining
full branch coverage and controlling the number of
iterations of a conditional loop [23].

II. TEST CASE GENERATE FOR UML MODEL

A. Use of UML Activity Diagram to Generate Test Cases
Activity diagram is an important diagram among more than
10 diagrams supported by UML. It is used for business
modeling, control and object flow modeling, complex
operation modeling etc. Main advantage of this model is its
simplicity and ease of understanding the flow of logic of
the system. However, finding test information is critical
task because of the following reasons [24]:

 (a) Activity diagram presents concepts at a higher
abstraction level compared to other diagrams like sequence
diagrams, class diagrams and hence, activity diagram
contains less information compared to others,

 (b) Presence of loop and concurrent activities in the
activity diagram results in path explosion, and practically, it
is not feasible to consider all execution paths for testing.
Here an approach is proposed for generating test cases
using UML activity diagrams. In this approach, we consider
a coverage criterion called activity path coverage criterion.
Generated test suite following activity path coverage
criterion aims to cover more faults like synchronization
faults, loop faults.

B. Use of UML Sequence Diagram to Generate Test
 Case

After the generation of all the listed scenarios,
corresponding analyzed sequence diagram for each
scenario. Each diagram had object and they exchanged the
message. The objects executed the functions given in the
sequence diagram through elaboration and message
exchange. Class diagram was very much important in this
phase, diagram contained operations and attributes required
for the interactions of their objects. Concerning this
approach, the category partition method in the sequence
diagram and class diagram for generating test cases is
applied [25].

Table 2: General Test Scenario of ATM machine
Generation

S.No. Input Steps Expected Result
1 Withdraw Rs. 1000

from ATM machine
-take card
- gather info
- give Rs
1000
- return card

-Valid insertion
-valid info
-Rs. 1000 less
-receipt & card
slot
 empty

2 Single customer, 1
account Rs. 1000
withdrawal from
checking account in
Rs. 200 bills

-get deposit
slip
-swipe card
-withdraw
cash
-print receipt

-filled correctly
-valid info on
screen
-Rs. 1000 less
- Balance &
withdrawal
amount

(a) The sequence and class diagrams[26,27] for
identifying the various parameters and environments of
the function, in selected test scenario are analyzed.
(b) Test Unit definition: Each object inside a sequence
diagram considered as a Test Unit, since it can be
separately tested and it represents and defines a possible use
of system.
(c) Search of setting and interaction categories: Interaction
categories are the interactions that an object has with other
objects involved in the same sequence diagram. Settings
categories were attributes of a class (and corresponding
sequence diagram’s object), like input parameters used in
messages or data structures [25].

Table 3: Test Case Generation with Test Scenario

Test Case
Transacti

on ID

Test
Scenario

Passwo
rd

Withdr
aw

Amount

Balanc
e

Result

1 Wrong
Passwor
d(2 left)

3421 n/a 20000 Incorrect
Password

2 Wrong
Passwor
d(1 left

3422 1500 Wrong
passwo

rd

Message
alert

3 Wrong
Passwor
d(0 left

3412 n/a 20000 Warning
message
and card
carried

4 Successf
ul

3412 2000 18000 Successf
ul

Transacti
on

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347- 5552, Volume-1, Issue-1, September, 2013

18

(d) Test Case Construction: After both the categories
were identified for each test unit, significant values were
chosen. For each found category, possible values and
constraints were generated. For this determination, the class
diagram is used, where an explorative of a method
implementation and its possible input values (or the
description of an attribute used and its significant values)
are found. By considering all the possible combinations of
well-matched choices, were derived the test cases. Finally,
for each test scenario, all the possible test cases were
generated.

III. GENETIC ALGORITHM BASED TESTING
The testing processes problems were considered as an
optimization problem got solution of those problems with
genetic algorithm. There was many different attributes for
the testing process according to their optimization. For a
type of problem there was an input domain and set of
sequence all events were the input domains so each and
every event had a fitness value. The event having more
branches or decisions got more weighted value.
The value 1 was assigned for those transitions, which
produced simple transition while value 0 was given for
those who did not produce any transition. The
weightage value 2 was given transition that produced
branches or fork and joins.
 Initially for the given problem randomly a valid set of

transition is selected.
 Secondly by using basic GA operations like

selection, crossing over and mutation. New solution in
the next generation is generated.

 Now, the fitness value of generations is calculated
and then best fit test case selected.

 Process continued till reaching the stop condition as
given by user.

Any successful test case was not the error proof. So error
minimization technique minimize the percentage of errors
is required.

IV. COMPARATIVE ANALYSIS
Four scenarios of ATM Banking system are seen. High
priority scenarios considered at first instant and the process
of calculating priority continued until all the scenarios of
the system are covered. The four scenarios of the ATM
Banking system are - ATM withdrawal, balance enquiry
with receipt and PIN verification. The result obtained
by our approach by considering the above said
problems such as ATM withdrawal is also presented.
Balance Enquiry in ATM and PIN verification in ATM
system in, table 4.

Table 4: Experimental Results (Test Data Generated with
Genetic Algorithm) -Comparison between GA Based

Approach and Without GA Approach

Faults No. of Fault
Inserted(Tranition

covered)

Faults are
found

without GA

Faults are
found

with GA

PIN 6 3 4

Balance 8 4 7

Withdrawal 11 6 8

Balance
with receipt

13 9 13

Total 38 22 32

Fault Detection
Score = (Σ faults found / Σ faults injected) * 100
For Banking System tree node , 38 faults and 22 faults
are injected found by without our approach and 32
faults are found by our approach, were revealed from
the test cases generated. Using the above formula,
57.8% score is obtained without my approach for Bank
system object diagram which showed optimization
levels of our approach same formula repeated for my
approach then got 71% score with my approach.
It was diagrammatically represented in the form of pie
chart as shown in Figure 2-3. Below the figure, the
analysis result produced by mutation testing

Fig. 1: Test Data Generated with GA

This approach uses genetic algorithm for generation of sub-
optimal test cases using UML and we called this algorithm
as genetic algorithm with UML (G-UML). Here, we use a
constraint to satisfy the transition coverage as test adequacy
criteria in genetic algorithm. The test adequacy criteria are
all transition should be covered at least once, which is used
as the stopping criterion for GA. So we called it as GA.
But we have considered a special case in our approach by
illuminating an ideal system like.

Test Cases Optimization Evaluation Using Efficient Algorithm with UML

19

Fig. 2: Optimization Result Generated Without GA

Fig. 3: Optimization Result Generated With GA

When the data using this approach, is implemented or
tested, found the much optimized result. Without this
approach the optimized result can’t be found out. By
comparing work with other approach much optimized
solution is found. As shown in table 4 without using my
approach, numbers of faults were inserted then
optimized result is not found. But using my approach, if a
number of faults were inserted then much optimized result
is found. When a number of faults for PIN, Balance,
Withdrawal and Balance with receipt are inserted, an
optimization results for PIN -5%, Balance -5%,
Withdrawal-5.4% and Balance with receipt-6.9 without
my approach is found out. When my approach is
implement then much optimize result for PIN -6.6%,
Balance -8.75%, Withdrawal-7.2% and Balance with
receipt-10% is found out.

V. CONCLUSION & FUTURE SCOPE

Here, we have focused on genetic algorithm in evaluation
of object-oriented model. The problem of optimization is
solved and increased the efficiency of a system. By this
model, better memory management and code reusability is
also facilitated. It may carry out towards the development
of UML using genetic algorithms in future. This approach
will help software developers to reduce their effort in
generating test data before coding in order to create an
effective and robust solution.

A genetic algorithm approach is used to obtain the
sub-optimal (best fittest) test cases, which satisfied the
test case adequacy criteria. This approach guaranteed the
minimum presence of error, in the generated test case.

REFERENCES

[1] Wang Linzhang, Yuan Jiesong ; Yu Xiaofeng ; Hu Jun ; Li
Xuandong ; Zheng Guoliang,Dept. of Comput. Sci. & Technol.,
Nanjing Univ., China ,Generating test cases from UML activity
diagram based on Gray-box method,published in proceeding,APSEC
'04 proceedings of the 11th Asia-Pacific Software Engineering
Conference, pages 284-291 ,IEEE Computer Society Washington, DC,
USA,2004.

[2] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed Hashem and
Mohamed F.Tolba, A Proposed Test Case Generation Technique
Based on Activity Diagrams, International Journal of Engineering &
Technology IJET-IJENS Vol: 11 No: 03, June 2011.

[3] G.D. Everett, R. McLeod, Jr., Software Testing: Testing across the
Entire Software Development Life Cycle, IEEE press, John Wiley &

 Sons, Inc., Hoboken, New Jersey, 2007.
[4] B. Hasling, H. Goetz, K. Beetz, Model Based Testing of System

Requirements using UML Use Case Models, Proceedings of the
International Conference on Software Testing, Verification, and
Validation, IEEE Computer Society Washington, DC, USA, 2008.

[5] M. Sarma, D. Kundu, R. Mall, Automatic Test Case Generation from
UML Sequence Diagrams, Proceedings of the 15th International
Conference on Advanced Computing and Communications, IEEE
Computer Society Washington, DC, USA, 2007.

[6] S.K. Swain, D.P. Mohapatra, Test Case Generation from Behavioral
UML Models,, International Journal of Computer Applications (IJCA)

 6 (2010).
[7] H. Kim, S. Kang, J. Baik, I. Ko, Test Cases Generation from UML

Activity Diagrams, Eighth ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing (SNPD), Qingdao, China, 2007.

[8] M. Chen, P. Mishra, D. Kalita, Coverage-driven Automatic Test
Generation for UML Activity Diagrams, Proceedings of the 18th
ACM Great Lakes symposium on VLSI, Orlando, Florida, USA, 2008.

[9] C. Mingsong, Q. Xiaokang, L. Xuandong, Automatic Test Case
Generation for UML Activity Diagrams, Proceedings of the
international workshop on Automation of software test, New York,
NY, USA, 2006.

[10] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, Z.
Guoliang, Generating Test Cases from UML Activity Diagram based

 on Gray-Box Method, Proceedings of the 11th Asia-pacific Software
Engineering Conference (ASPSEC), IEEE Computer Society,

 Washington, DC, USA, 2004.
[11] M. Chen, X. Qiu, W. Xu, L. Wang, J. Zhao, X. Li, UML Activity

Diagram-Based Automatic Test Case Generation for Java Programs,
 The Computer Journal 52 (2009) 545-556.
[12] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling

Language User Guide, Addison-Wesley, 1999.
[13] R. Mall, Fundamentals of software engineering, 2nd ed. New Delhi:

Prentice-Hall of India Ltd, 2008.
[14] D. Graham, E. Veenendaal, I. Evans, R. Black. Foundations of

Software Testing ISTQB Certification, International Software testing
Qualifications Board, 2010.

[15] L. Lazić, M. Medan. Software Quality Engineering versus Software
Testing Process, The Telecommunication Forum TELFOR
(Communication Forum), 2003.

[16] K. Smolander. Quality Standards in Business Software Development,
Master of Science Thesis, Lappeenranta University of Technology,
Department of Information Technology, 2009.

[17] IEEE standard for software test documentation, IEEE Std 829-1998,
Published by Institute for Electrical and Electronics Engineers, New

 York.
[18] CMMI Product Team, CMMI for development v 1.3 (CMU/SEI-

2010-TR-033), Carnegie Mellon University, Software Engineering
Institute, 2010.

[19] S.J. Andriole, Software Validation, Verification, Testing and
documentation, Petrocelli Books, Princeton, New Jersey, 1986.

 International Journal of Innovative Research in Computer Science & Technology (IJIRCST)
 ISSN: 2347- 5552, Volume-1, Issue-1, September, 2013

20

[20] K. Deb, Multi-objective optimization using evolutionary
algorithms,John Wiley & Sons, 2001.

[21] J.J. Durillo, A.J. Nebro, F. Luna, B. Dorronsoro, and E. Alba.
jMetal:a java framework for developing multi-objective optimization

 metaheuristics.Technical Report ITI-2006-10, Departamento de
Lenguajes yCiencias de la Computaci´on, University of M´alaga,
E.T.S.I. Inform´atica,Campus de Teatinos, 2006.

[22] Tsoukalas, L., and Uhrig, R. Fuzzy and Neural Approaches in
Engineering, Wiley, 1997.

[23] Jones, B.F. ; Dept. of Comput. Studies, Glamorgan Univ., Pontypridd,
UK ; Sthamer, H.-H. ; Eyres, D.E.,Automatic structural testing using

 genetic algorithms, Software Engineering Journal, Volume 11, Issue
5, September 1996, p. 299 – 306,

[24] Puneet Patel and Nitin N. Patil,,Test case formation using UML
activity diagram, Proceedings of " National Conference on Emerging
Trends in Computer Technology (NCETCT-2012)" , World Journal
of Science and Technology,India 2012.

[25] Biswal, Baikuntha Narayan, Test Case Generation and Optimization
of Object-Oriented Software using UML Behavioral
Models,2010,http://ethesis.nitrkl.ac.in/2923/

[26] B.B. Agarwal, S.P. Tayal, M. Gupta, Software Engineering and
testing, Infinity Science Press, Jones and Bartlett, Hingham, Toronto,
2010.

[27] OMG, OMG Unified Modeling Language Specification version 1.4.2.
2001: OMG.

